
Package: GMKMcharlie (via r-universe)
August 31, 2024

Type Package

Title Unsupervised Gaussian Mixture and Minkowski and Spherical
K-Means with Constraints

Version 1.1.5

Author Charlie Wusuo Liu

Maintainer Charlie Wusuo Liu <liuwusuo@gmail.com>

Description High performance trainers for parameterizing and
clustering weighted data. The Gaussian mixture (GM) module
includes the conventional EM (expectation maximization)
trainer, the component-wise EM trainer, the
minimum-message-length EM trainer by Figueiredo and Jain (2002)
<doi:10.1109/34.990138>. These trainers accept additional
constraints on mixture weights, covariance eigen ratios and on
which mixture components are subject to update. The K-means
(KM) module offers clustering with the options of (i)
deterministic and stochastic K-means++ initializations, (ii)
upper bounds on cluster weights (sizes), (iii) Minkowski
distances, (iv) cosine dissimilarity, (v) dense and sparse
representation of data input. The package improved the typical
implementations of GM and KM algorithms in various aspects. It
is carefully crafted in multithreaded C++ for modeling large
data for industry use.

License GPL-3

Encoding UTF-8

Imports Rcpp (>= 1.0.0), RcppParallel

Suggests MASS (>= 7.3.0), plot3D (>= 1.1.1)

LinkingTo Rcpp, RcppParallel, RcppArmadillo

SystemRequirements GNU make

NeedsCompilation yes

Date/Publication 2021-05-29 06:20:02 UTC

Repository https://whateverliu.r-universe.dev

RemoteUrl https://github.com/cran/GMKMcharlie

1

https://doi.org/10.1109/34.990138

2 d2s

RemoteRef HEAD

RemoteSha ee895b144744daef788e6889c13ef57d6863281a

Contents
d2s . 2
GM . 3
GMcw . 8
GMfj . 12
KM . 17
KMconstrained . 19
KMconstrainedSparse . 22
KMppIni . 24
KMppIniSparse . 26
KMsparse . 28
s2d . 30

Index 32

d2s Dense to sparse conversion

Description

Convert data from dense representation (matrix) to sparse representation (list of data frames).

Usage

d2s(
X,
zero = 0,
threshold = 1e-16,
verbose= TRUE
)

Arguments

X A d x N numeric matrix where N is the number of data points — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

zero A numeric value. Elements in X satisfying abs(X[i] - zero) <= threshold are
treated as zeros. Default 0.

threshold A numeric value, explained above.

verbose A boolean value. TRUE prints progress.

GM 3

Value

A list of size N. Value[[i]] is a 2-column data frame. The 1st column is a sorted integer vector of
the indexes of nonzero dimensions. Values in these dimensions are stored in the 2nd column as a
numeric vector.

Examples

N = 2000L
d = 3000L
X = matrix(rnorm(N * d) + 2, nrow = d)
Fill many zeros in X:
X = apply(X, 2, function(x) {

x[sort(sample(d, d * runif(1, 0.95, 0.99)))] = 0; x})
Get the sparse version of X.
sparseX = GMKMcharlie::d2s(X)
str(sparseX[1:5])

GM Multithreaded Gaussian mixture trainer

Description

The traditional training algorithm via maximum likelihood for parameterizing weighted data with
a mixture of Gaussian PDFs. Bounds on covariance matrix eigen ratios and mixture weights are
optional.

Usage

GM(
X,
Xw = rep(1, ncol(X)),
alpha = numeric(0),
mu = matrix(ncol = 0, nrow = 0),
sigma = matrix(ncol = 0, nrow = 0),
G = 5L,
convergenceEPS = 1e-05,
convergenceTail = 10,
alphaEPS = 0,
eigenRatioLim = Inf,
embedNoise = 1e-6,
maxIter = 1000L,
maxCore = 7L,
tlimit = 3600,
verbose = TRUE,
updateAlpha = TRUE,
updateMean = TRUE,
updateSigma = TRUE,
checkInitialization = FALSE,

4 GM

KmeansFirst = TRUE,
KmeansPPfirst = FALSE,
KmeansRandomSeed = NULL,
friendlyOutput = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of observations — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

Xw A numeric vector of size N. Xw[i] is the weight on observation X[, i]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

alpha A numeric vector of size K, the number of Gaussian kernels in the mixture
model. alpha are the initial mixture weights and should sum up to 1. Default
empty.

mu A d x K numeric matrix. mu[, i] is the initial mean for the ith Gaussian kernel.
Default empty.

sigma Either a list of d x d matrices, or a d^2 x K numeric matrix. For the latter, each
column represents a flattened d x d initial covariance matrix of the ith Gaussian
kernel. In R, as.numeric(aMatrix) gives the flattened version of aMatrix.
Covariance matrix of each Gaussian kernel MUST be positive-definite. Default
empty.

G An integer. If at least one of the parameters alpha, mu, sigma are empty, the
program will initialize G Gaussian kernels via K-means++ deterministic initial-
ization. See KMppIni(). Otherwise G is ignored. Default 5.

convergenceEPS A numeric value. If the average change of all parameters in the mixture model
is below convergenceEPS relative to those in the pervious iteration, the pro-
gram ends. Checking convergence this way is faster than recomputing the log-
likelihood every iteration. Default 1e-5.

convergenceTail

If every one of the last convergenceTail iteration produces less than a relative
increase of convergenceEPS in log-likelihood, stop.

alphaEPS A numeric value. During training, if any Gaussian kernel’s weight is no greater
than alphaEPS, the kernel is deleted. Default 0.

eigenRatioLim A numeric value. During training, if any Gaussian kernel’s max:min eigen value
ratio exceeds eigenRatioLim, the kernel is treated as degenerate and deleted.
Thresholding eigen ratios is in the interest of minimizing the effect of degenerate
kernels in an early stage. Default Inf.

embedNoise A small constant added to the diagonal entries of all covariance matrices. This
may prevent covariance matrices collapsing prematurely. A suggested value
is 1e-6. Covariance degeneration is detected during Cholesky decomposition,
and will lead the trainer to remove the corresponding mixture component. For
high-dimensional problem, setting embedNoise to nonzero may pose the illusion
of massive log-likelihood, all because one or more mixture components are so
close to singular, which makes the densities around them extremely high.

GM 5

maxIter An integer, the maximal number of iterations.

maxCore An integer. The maximal number of threads to invoke. Should be no more than
the total number of logical processors on machine. Default 7.

tlimit A numeric value. The program exits with the current model in tlimit seconds.

verbose A boolean value. TRUE prints progress.

updateAlpha A boolean value or boolean vector. If a boolean value, TRUE implies weights
on all mixture components are subject to update, otherwise they should stay
unchanged during training. If a boolean vector, its size should equal the number
of mixture components. updateAlpha[i] == TRUE implies the weight on the
ith component is subject to update. Regardless of updateAlpha, the output will
have normalized mixture weights.

updateMean A boolean value or a boolean vector. If a boolean value, TRUE implies means
of all mixture components are subject to update, otherwise they should stay
unchanged during training. If a boolean vector, its size should equal the number
of mixture components. updateMean[i] == TRUE implies the mean of the ith
component is subject to update.

updateSigma A boolean value or a boolean vector. If a boolean value, TRUE implies covari-
ances of all mixture components are subject to update, otherwise they should
stay unchanged during training. If a boolean vector, its size should equal the
number of mixture components. updateSigma[i] == TRUE implies the covari-
ance of the ith component is subject to update.

checkInitialization

Check if any of the input covariance matrices are singular.

KmeansFirst A boolean value. Run K-means clustering for finding means.

KmeansPPfirst A boolean value. Run stochastic K-means++ for K-means initialization.
KmeansRandomSeed

An integer or NULL, the random seed for K-means++.

friendlyOutput TRUE returns covariance matrices in a list rather than a single matrix of columns
of flattened covariance matrices.

Details

An in-place Cholesky decomposition of covariance matrix is implemented for space and speed ef-
ficiency. Only the upper triangle of the Cholesky decomposition is memorized for each Gaussian
kernel, and it is then applied to a forward substitution routine for fast Mahalanobis distances com-
putation. Each of the three main steps in an iteration — Gaussian density computation, parameter
inference, parameter update — is multithreaded and hand-scheduled using Intel TBB. Extensive
efforts have been made over cache-friendliness and extra multithreading overheads such as memory
allocation.

If eigenRatioLim is finite, eigen decomposition employs routines in RcppArmadillo.

Value

A list of size 5:

alpha a numeric vector of size K. The mixture weights.

6 GM

mu a d x K numeric matrix. Each column is the mean of a Gaussian kernel.

sigma a d^2 x K numeric matrix. Each column is the flattened covariance matrix of a
Gaussian kernel. Do matrix(sigma[, i], nrow = d) to recover the covariance
matrix of the ith kernel.

fitted a numeric vector of size N. fitted[i] is the probability density of the ith ob-
servation given by the mixture model.

clusterMember a list of K integer vectors, the hard clustering inferred from the mixture model.
Each integer vector contains the indexes of observations in X.

Warning

For one-dimensional data, X should still follow the data structure requirements: a matrix where each
column is an observation.

Examples

===
Examples below use 1 thread to pass CRAN check. Speed advantage of multiple
threads will be more pronounced for larger data.
===

===
Parameterize the iris data. Let the function initialize Gaussian kernels.
===
X = t(iris[1:4])
CRAN check only allows 2 threads at most. Increase `maxCore` for
acceleration.
gmmRst = GMKMcharlie::GM(X, G = 4L, maxCore = 1L, friendlyOutput = FALSE)
str(gmmRst)

===
Parameterize the iris data given Gaussian kernels.
===
G = 3L
d = nrow(X) # Dimensionality.
alpha = rep(1, G) / G
mu = X[, sample(ncol(X), G)] # Sample observations as initial means.
Take the average variance and create initial covariance matrices.
meanVarOfEachDim = sum(diag(var(t(X)))) / d
covar = diag(meanVarOfEachDim / G, d)
covars = matrix(rep(as.numeric(covar), G), nrow = d * d)

Models are sensitive to initialization.
gmmRst2 = GMKMcharlie::GM(

X, alpha = alpha, mu = mu, sigma = covars, maxCore = 1L,
friendlyOutput = FALSE)

GM 7

str(gmmRst2)

===
For fun, fit Rosenbrock function with a Gaussian mixture.
===
set.seed(123)
rosenbrock <- function(x, y) {(1 - x) ^ 2 + 100 * (y - x ^ 2) ^ 2}
N = 2000L
x = runif(N, -2, 2)
y = runif(N, -1, 3)
z = rosenbrock(x, y)

X = rbind(x, y)
Xw = z * (N / sum(z)) # Weights on observations should sum up to N.
gmmFit = GMKMcharlie::GM(X, Xw = Xw, G = 5L, maxCore = 1L, verbose = FALSE,

friendlyOutput = FALSE)

oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x, y, gmmFit$fitted, pch = 20)
par(mfrow = oldpar)

===
For fun, fit a 3D spiral distribution.
===
N = 2000
t = runif(N) ^ 2 * 15
x = cos(t) + rnorm(N) * 0.1
y = sin(t) + rnorm(N) * 0.1
z = t + rnorm(N) * 0.1

X = rbind(x, y, z)
d = 3L
G = 10L
gmmFit = GMKMcharlie::GM(X, G = G, maxCore = 1L, verbose = FALSE,

KmeansFirst = TRUE, KmeansPPfirst = TRUE, KmeansRandomSeed = 42,
friendlyOutput = TRUE)

Sample N points from the Gaussian mixture.
ns = as.integer(round(N * gmmFit$alpha))
sampledPoints = list()
for(i in 1:G)
{

sampledPoints[[i]] = MASS::mvrnorm(

8 GMcw

ns[i], mu = gmmFit$mu[, i], Sigma = matrix(gmmFit$sigma[[i]], nrow = d))
}
sampledPoints =

matrix(unlist(lapply(sampledPoints, function(x) t(x))), nrow = d)

Plot the original data and the samples from the mixture model.
oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x = sampledPoints[1,],

y = sampledPoints[2,],
z = sampledPoints[3,], pch = 20)

par(mfrow = oldpar)

===
For fun, fit a 3D spiral distribution. Fix parameters at random.
===
N = 2000
t = runif(N) ^ 2 * 15
x = cos(t) + rnorm(N) * 0.1
y = sin(t) + rnorm(N) * 0.1
z = t + rnorm(N) * 0.1

X = rbind(x, y, z); dimnames(X) = NULL
d = 3L
G = 10L
mu = X[, sample(ncol(X), G)]
s = matrix(rep(as.numeric(cov(t(X))), G), ncol = G)
alpha = rep(1 / G, G)
updateAlpha = sample(c(TRUE, FALSE), G, replace = TRUE)
updateMean = sample(c(TRUE, FALSE), G, replace = TRUE)
updateSigma = sample(c(TRUE, FALSE), G, replace = TRUE)
gmmFit = GMKMcharlie::GM(X, alpha = alpha, mu = mu, sigma = s, G = G,

maxCore = 2, verbose = FALSE,
updateAlpha = updateAlpha,
updateMean = updateMean,
updateSigma = updateSigma,
convergenceEPS = 1e-5, alphaEPS = 1e-8,
friendlyOutput = TRUE)

GMcw Multithreaded component-wise Gaussian mixture trainer

Description

The component-wise variant of GM().

GMcw 9

Usage

GMcw(
X,
Xw = rep(1, ncol(X)),
alpha = numeric(0),
mu = matrix(ncol = 0, nrow = 0),
sigma = matrix(ncol = 0, nrow = 0),
G = 5L,
convergenceEPS = 1e-05,
alphaEPS = 0,
eigenRatioLim = Inf,
maxIter = 1000L,
maxCore = 7L,
tlimit = 3600,
verbose = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of observations — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

Xw A numeric vector of size N. Xw[i] is the weight on observation X[, i]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

alpha A numeric vector of size K, the number of Gaussian kernels in the mixture
model. alpha are the initial mixture weights and should sum up to 1. Default
empty.

mu A d x K numeric matrix. mu[, i] is the initial mean for the ith Gaussian kernel.
Default empty matrix.

sigma A d^2 x K numeric matrix. Each column represents a flattened d x d initial co-
variance matrix of the ith Gaussian kernel. In R, as.numeric(aMatrix) gives
the flattened version of aMatrix. Covariance matrix of each Gaussian kernel
MUST be positive-definite. Default empty.

G An integer. If at least one of the parameters alpha, mu, sigma are empty, the
program will initialize G Gaussian kernels via K-means++ deterministic initial-
ization. See KMppIni(). Otherwise G is ignored. Default 5.

convergenceEPS A numeric value. If the average change of all parameters in the mixture model
is below convergenceEPS relative to those in the pervious iteration, the pro-
gram ends. Checking convergence this way is faster than recomputing the log-
likelihood every iteration. Default 1e-5.

alphaEPS A numeric value. During training, if any Gaussian kernel’s weight is no greater
than alphaEPS, the kernel is deleted. Default 0.

eigenRatioLim A numeric value. During training, if any Gaussian kernel’s max:min eigen value
ratio exceeds eigenRatioLim, the kernel is treated as degenerate and deleted.
Thresholding eigen ratios is in the interest of minimizing the effect of degenerate
kernels in an early stage. Default Inf.

10 GMcw

maxIter An integer, the maximal number of iterations.

maxCore An integer. The maximal number of threads to invoke. Should be no more than
the total number of logical processors on machine. Default 7.

tlimit A numeric value. The program exits with the current model in tlimit seconds.

verbose A boolean value. TRUE prints progress.

Details

Relevant details can be found in GM(). In GMcw(), an update of any Gaussian kernel triggers the
update of the underlying weighing matrix that directs the update of all Gaussian kernels. Only after
that the next Gaussian kernel is updated. See references.

In the actual implementation, the N x K weighing matrix WEI does not exist in memory. An N x K
density matrix DEN instead stores each Gaussian kernel’s probability density at every observation
in X. Mathematically, the ith column of WEI equals DEN’s ith column divided by the row sum RS.
RS is a vector of size N and is memorized and updated responding to the update of each Gaussian
kernel: before updating the ith kernel, the algorithm subtracts the ith column of DEN from RS; after
the kernel is updated and the probability densities are recomputed, the algorithm adds back the ith
column of DEN to RS. Now, to update the i+1th Gaussian kernel, we can divide the i+1th column of
DEN by RS to get the weighing coefficients.

The above implementation makes the component-wise trainer comparable to the classic one in terms
of speed. The component-wise trainer is a key component in Figuredo & jain’s MML (minimum
message length) mixture model trainer to avoid premature deaths of the Gaussian kernels.

Value

A list of size 5:

alpha a numeric vector of size K. The mixture weights.

mu a d x K numeric matrix. Each column is the mean of a Gaussian kernel.

sigma a d^2 x K numeric matrix. Each column is the flattened covariance matrix of a
Gaussian kernel. Do matrix(sigma[, i], nrow = d) to recover the covariance
matrix of the ith kernel.

fitted a numeric vector of size N. fitted[i] is the probability density of the ith ob-
servation given by the mixture model.

clusterMember a list of K integer vectors, the hard clustering inferred from the mixture model.
Each integer vector contains the indexes of observations in X.

Warning

For one-dimensional data, X should still follow the data structure requirements: a matrix where each
column is an observation.

References

Celeux, Gilles, et al. "A Component-Wise EM Algorithm for Mixtures." Journal of Computational
and Graphical Statistics, vol. 10, no. 4, 2001, pp. 697-712. JSTOR, www.jstor.org/stable/1390967.

GMcw 11

Examples

===
Examples below use 1 thread to pass CRAN check. Speed advantage of multiple
threads will be more pronounced for larger data.
===

===
Parameterize the iris data. Let the function initialize Gaussian kernels.
===
X = t(iris[1:4])
CRAN check only allows 2 threads at most. Increase `maxCore` for
acceleration.
gmmRst = GMKMcharlie::GMcw(X, G = 3L, maxCore = 1L)
str(gmmRst)

===
Parameterize the iris data given Gaussian kernels.
===
G = 3L
d = nrow(X) # Dimensionality.
alpha = rep(1, G) / G
mu = X[, sample(ncol(X), G)] # Sample observations as initial means.
Take the average variance and create initial covariance matrices.
meanVarOfEachDim = sum(diag(var(t(X)))) / d
covar = diag(meanVarOfEachDim / G, d)
covars = matrix(rep(as.numeric(covar), G), nrow = d * d)

Models could be different given a different initialization.
gmmRst2 = GMKMcharlie::GMcw(

X, alpha = alpha, mu = mu, sigma = covars, maxCore = 1L)
str(gmmRst2)

===
For fun, fit Rosenbrock function with a Gaussian mixture.
===
set.seed(123)
rosenbrock <- function(x, y) {(1 - x) ^ 2 + 100 * (y - x ^ 2) ^ 2}
N = 2000L
x = runif(N, -2, 2)
y = runif(N, -1, 3)
z = rosenbrock(x, y)

X = rbind(x, y)

12 GMfj

Xw = z * (N / sum(z)) # Weights on observations should sum up to N.
gmmFit = GMKMcharlie::GMcw(X, Xw = Xw, G = 5L, maxCore = 1L, verbose = FALSE)

oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x, y, gmmFit$fitted, pch = 20)
par(mfrow = oldpar)

===
For fun, fit a 3D spiral distribution.
===
N = 2000
t = runif(N) ^ 2 * 15
x = cos(t) + rnorm(N) * 0.1
y = sin(t) + rnorm(N) * 0.1
z = t + rnorm(N) * 0.1

X = rbind(x, y, z)
d = 3L
G = 10L
gmmFit = GMKMcharlie::GMcw(X, G = G, maxCore = 1L, verbose = FALSE)
Sample N points from the Gaussian mixture.
ns = as.integer(round(N * gmmFit$alpha))
sampledPoints = list()
for(i in 1L : G)
{

sampledPoints[[i]] = MASS::mvrnorm(
ns[i], mu = gmmFit$mu[, i], Sigma = matrix(gmmFit$sigma[, i], nrow = d))

}
sampledPoints =

matrix(unlist(lapply(sampledPoints, function(x) t(x))), nrow = d)

Plot the original data and the samples from the mixture model.
oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x = sampledPoints[1,],

y = sampledPoints[2,],
z = sampledPoints[3,],
pch = 20)

par(mfrow = oldpar)

GMfj Multithreaded minimum message length Gaussian mixture trainer

GMfj 13

Description

Figueiredo and Jain’s Gaussian mixture trainer with all options in GM().

Usage

GMfj(
X,
Xw = rep(1, ncol(X)),
alpha = numeric(0),
mu = matrix(ncol = 0, nrow = 0),
sigma = matrix(ncol = 0, nrow = 0),
G = 5L,
Gmin = 2L,
convergenceEPS = 1e-05,
alphaEPS = 0,
eigenRatioLim = Inf,
maxIter = 1000L,
maxCore = 7L,
tlimit = 3600,
verbose = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of observations — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

Xw A numeric vector of size N. Xw[i] is the weight on observation X[, i]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

alpha A numeric vector of size K, the number of Gaussian kernels in the mixture
model. alpha are the initial mixture weights and should sum up to 1. Default
empty.

mu A d x K numeric matrix. mu[, i] is the initial mean for the ith Gaussian kernel.
Default empty.

sigma A d^2 x K numeric matrix. Each column represents a flattened d x d initial co-
variance matrix of the ith Gaussian kernel. In R, as.numeric(aMatrix) gives
the flattened version of aMatrix. Covariance matrix of each Gaussian kernel
MUST be positive-definite. Default empty.

G An integer. If at least one of the parameters alpha, mu, sigma are empty, the
program will initialize G Gaussian kernels via K-means++ deterministic initial-
ization. See KMppIni(). Otherwise G is ignored. Default 5.

Gmin An integer. The final model should have at least Gmin kernels.

convergenceEPS A numeric value. If the average change of all parameters in the mixture model
is below convergenceEPS relative to those in the pervious iteration, the pro-
gram ends. Checking convergence this way is faster than recomputing the log-
likelihood every iteration. Default 1e-5.

14 GMfj

alphaEPS A numeric value. During training, if any Gaussian kernel’s weight is no greater
than alphaEPS, the kernel is deleted. Default 0.

eigenRatioLim A numeric value. During training, if any Gaussian kernel’s max:min eigen value
ratio exceeds eigenRatioLim, the kernel is treated as degenerate and deleted.
Thresholding eigen ratios is in the interest of minimizing the effect of degenerate
kernels in an early stage. Default Inf.

maxIter An integer, the maximal number of iterations.

maxCore An integer. The maximal number of threads to invoke. Should be no more than
the total number of logical processors on machine. Default 7.

tlimit A numeric value. The program exits with the current model in tlimit seconds.

verbose A boolean value. TRUE prints progress.

Details

Although heavily cited, the paper has some misleading information and the algorithm’s performance
does not live up to its reputation. See <https://stats.stackexchange.com/questions/423935/figueiredo-
and-jains-gaussian-mixture-em-convergence-criterion>. Nevertheless, it is a worthwhile algorithm
to try in practice.

Value

A list of size 5:

alpha a numeric vector of size K. The mixture weights.

mu a d x K numeric matrix. Each column is the mean of a Gaussian kernel.

sigma a d^2 x K numeric matrix. Each column is the flattened covariance matrix of a
Gaussian kernel. Do matrix(sigma[, i], nrow = d) to recover the covariance
matrix of the ith kernel.

fitted a numeric vector of size N. fitted[i] is the probability density of the ith ob-
servation given by the mixture model.

clusterMember a list of K integer vectors, the hard clustering inferred from the mixture model.
Each integer vector contains the indexes of observations in X.

Warning

For one-dimensional data, X should still follow the data structure requirements: a matrix where each
column is an observation.

References

Mario A.T. Figueiredo & Anil K. Jain (2002): "Unsupervised learning of finite mixture models."
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3): 381-396.

GMfj 15

Examples

===
Examples below use 1 thread to pass CRAN check. Speed advantage of multiple
threads will be more pronounced for larger data.
===

===
Parameterize the iris data. Let the function initialize Gaussian kernels.
===
X = t(iris[1:4])
CRAN check only allows 2 threads at most. Increase `maxCore` for
acceleration.
system.time({gmmRst = GMKMcharlie::GMfj(

X, G = 25L, Gmin = 2L, maxCore = 1L, verbose = FALSE)})
str(gmmRst)

===
Parameterize the iris data given Gaussian kernels.
===
G = 25L
d = nrow(X) # Dimensionality.
alpha = rep(1, G) / G
mu = X[, sample(ncol(X), G)] # Sample observations as initial means.
Take the average variance and create initial covariance matrices.
meanVarOfEachDim = sum(diag(var(t(X)))) / d
covar = diag(meanVarOfEachDim / G, d)
covars = matrix(rep(as.numeric(covar), G), nrow = d * d)

Models are sensitive to initialization.
system.time({gmmRst2 = GMKMcharlie::GMfj(

X, alpha = alpha, mu = mu, sigma = covars, maxCore = 1L, verbose = FALSE)})
str(gmmRst2)

===
For fun, fit Rosenbrock function with a Gaussian mixture.
===
set.seed(123)
rosenbrock <- function(x, y) {(1 - x) ^ 2 + 100 * (y - x ^ 2) ^ 2}
N = 2000L
x = runif(N, -2, 2)
y = runif(N, -1, 3)
z = rosenbrock(x, y)

16 GMfj

X = rbind(x, y)
Xw = z * (N / sum(z)) # Weights on observations should sum up to N.
system.time({gmmFit = GMKMcharlie::GMfj(

X, Xw = Xw, G = 5L, maxCore = 1L, verbose = FALSE)})

oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x, y, gmmFit$fitted, pch = 20)
par(mfrow = oldpar)

===
For fun, fit a 3D spiral distribution.
===
N = 2000
t = runif(N) ^ 2 * 15
x = cos(t) + rnorm(N) * 0.1
y = sin(t) + rnorm(N) * 0.1
z = t + rnorm(N) * 0.1

X = rbind(x, y, z)
d = 3L
G = 10L
system.time({gmmFit = GMKMcharlie::GMfj(

X, G = G, maxCore = 1L, verbose = FALSE)})
Sample N points from the Gaussian mixture.
ns = as.integer(round(N * gmmFit$alpha))
sampledPoints = list()
for(i in 1L : G)
{

sampledPoints[[i]] = MASS::mvrnorm(
ns[i], mu = gmmFit$mu[, i], Sigma = matrix(gmmFit$sigma[, i], nrow = d))

}
sampledPoints =

matrix(unlist(lapply(sampledPoints, function(x) t(x))), nrow = d)

Plot the original data and the samples from the mixture model.
oldpar = par()$mfrow
par(mfrow = c(1, 2))
plot3D::points3D(x, y, z, pch = 20)
plot3D::points3D(x = sampledPoints[1,],

y = sampledPoints[2,],
z = sampledPoints[3,], pch = 20)

par(mfrow = oldpar)

KM 17

KM K-means over dense representation of data

Description

Multithreaded weighted Minkowski and spherical K-means via Lloyd’s algorithm over dense rep-
resentation of data.

Usage

KM(
X,
centroid,
Xw = rep(1, ncol(X)),
minkP = 2,
maxIter = 100L,
maxCore = 7L,
verbose = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of data points — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

centroid A d x K numeric matrix where K is the number of clusters. Each column repre-
sents a cluster center.

Xw A numeric vector of size N. Xw[i] is the weight on observation X[, i]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

maxIter An integer. The maximal number of iterations. Default 100.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

verbose A boolean value. TRUE prints progress.

Details

Implementation highlights include:

(i) In Minkowski distance calculation, integer power no greater than 30 uses multiplications. Frac-
tional powers or powers above 30 call std::pow().

(ii) Multithreaded observation-centroid distance calculations. Distances are memorized to avoid
unnecessary recomputations if centroids did not change in the last iteration.

18 KM

(iii) A lookup table is built for storing observation - centroid ID pairs during the assignment step.
Observation IDs are then grouped by centroid IDs which allows parallel computing cluster means.

(iv) Function allows non-uniform weights on observations.

(v) Meta-template programming trims branches over different distance functions and other comput-
ing methods during compile time.

Value

A list of size K, the number of clusters. Each element is a list of 3 vectors:

centroid a numeric vector of size d.

clusterMember an integer vector of indexes of elements grouped to centroid.
member2centroidDistance

a numeric vector of the same size of clusterMember. The ith element is the
Minkowski distance or cosine dissimilarity from centroid to the clusterMember[i]th
observation in X.

Empty clusterMember implies empty cluster.

Note

Although rarely happens, divergence of K-means with non-Euclidean distance minkP != 2 measure
is still a theoretical possibility.

Examples

===
Play random numbers. See speed.
===
N = 5000L # Number of points.
d = 500L # Dimensionality.
K = 50L # Number of clusters.
dat = matrix(rnorm(N * d) + runif(N * d), nrow = d)

Use kmeans++ initialization.
centroidInd = GMKMcharlie::KMppIni(

X = dat, K, firstSelection = 1L, minkP = 2, stochastic = FALSE,
seed = sample(1e9L, 1), maxCore = 2L, verbose = TRUE)

centroid = dat[, centroidInd]

Euclidean.
system.time({rst = GMKMcharlie::KM(

X = dat, centroid = centroid, maxIter = 100,
minkP = 2, maxCore = 2, verbose = TRUE)})

Cosine dissimilarity.

KMconstrained 19

dat = apply(dat, 2, function(x) x / sum(x ^ 2) ^ 0.5)
centroid = dat[, centroidInd]
system.time({rst2 = GMKMcharlie::KM(

X = dat, centroid = centroid, maxIter = 100,
minkP = "cosine", maxCore = 2, verbose = TRUE)})

===
Test against R's inbuilt km()
===
dat = t(iris[1:4])
dimnames(dat) = NULL

Use kmeans++ initialization.
centroidInd = GMKMcharlie::KMppIni(

X = dat, K = 3, firstSelection = 1L, minkP = 2, stochastic = FALSE,
seed = sample(1e9L, 1), maxCore = 2L, verbose = TRUE)

centroid = dat[, centroidInd]

rst = GMKMcharlie::KM(X = dat, centroid = centroid, maxIter = 100,
minkP = 2, maxCore = 2, verbose = TRUE)

rst = lapply(rst, function(x) sort(x$clusterMember))

rst2 = kmeans(x = t(dat), centers = t(centroid), algorithm = "Lloyd")
rst2 = aggregate(list(1L : length(rst2$cluster)),

list(rst2$cluster), function(x) sort(x))[[2]]

setdiff(rst, rst2)

KMconstrained K-means over dense data input with constraints on cluster weights

Description

Multithreaded weighted Minkowski and spherical K-means via Lloyd’s algorithm over dense rep-
resentation of data given cluster size (weight) constraints.

Usage

KMconstrained(
X,
centroid,
Xw = rep(1, ncol(X)),
clusterWeightUB = rep(ncol(X) + 1, ncol(centroid)),
minkP = 2,
convergenceTail = 5L,

20 KMconstrained

tailConvergedRelaErr = 1e-04,
maxIter = 100L,
maxCore = 7L,
paraSortInplaceMerge = FALSE,
verbose = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of data points — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

centroid A d x K numeric matrix where K is the number of clusters. Each column repre-
sents a cluster center.

Xw A numeric vector of size N. Xw[i] is the weight on observation X[, i]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

clusterWeightUB

An integer vector of size K. The upper bound of weight for each cluster. If Xw
are all 1, clusterWeightUB upper-bound cluster sizes.

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

convergenceTail

An integer. The algorithm may end up with "cyclical convergence" due to the
size / weight constraints, that is, every few iterations produce the same cluster-
ing. If the cost (total in-cluster distance) of each of the last convergenceTail
iterations has a relative difference less than tailConvergedRelaErr against the
cost from the prior iteration, the program stops.

tailConvergedRelaErr

A numeric value, explained in convergenceTail.

maxIter An integer. The maximal number of iterations. Default 100.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

paraSortInplaceMerge

A boolean value. TRUE let the algorithm call std::inplace_merge() (std
refers to C++ STL namespace) instead of std::merge() for parallel-sorting the
observation-centroid distances. In-place merge is slower but requires no extra
memory.

verbose A boolean value. TRUE prints progress.

Details

See details in KM() for common implementation highlights. Weight upper bounds are implemented
as follows:

In each iteration, all the (observation ID, centroid ID, distance) tuples are sorted by distance. From
the first to the last tuple, the algorithm puts observation in the cluster labeled by the centroid ID,

KMconstrained 21

if (i) the observation has not already been assigned and (ii) the cluster size has not exceeded its
upper bound. The actual implementation is slightly different. A parallel merge sort is crafted for
computing speed.

Value

A list of size K, the number of clusters. Each element is a list of 3 vectors:

centroid a numeric vector of size d.
clusterMember an integer vector of indexes of elements grouped to centroid.
member2centroidDistance

a numeric vector of the same size of clusterMember. The ith element is the
Minkowski distance or cosine dissimilarity from centroid to the clusterMember[i]th
observation in X.

Empty clusterMember implies empty cluster.

Note

Although rarely happens, divergence of K-means with non-Euclidean distance minkP != 2 mea-
sure is still a theoretical possibility. Bounding the cluster weights / sizes increases the chance of
divergence.

Examples

N = 3000L # Number of points.
d = 500L # Dimensionality.
K = 50L # Number of clusters.
dat = matrix(rnorm(N * d) + runif(N * d), nrow = d)

Use kmeans++ initialization.
centroidInd = GMKMcharlie::KMppIni(

X = dat, K, firstSelection = 1L, minkP = 2, stochastic = FALSE,
seed = sample(1e9L, 1), maxCore = 2L, verbose = TRUE)

centroid = dat[, centroidInd]

Each cluster size should not be greater than N / K * 2.
sizeConstraints = as.integer(rep(N / K * 2, K))
system.time({rst = GMKMcharlie::KMconstrained(

X = dat, centroid = centroid, clusterWeightUB = sizeConstraints,
maxCore = 2L, tailConvergedRelaErr = 1e-6, verbose = TRUE)})

Size upper bounds vary in [N / K * 1.5, N / K * 2]
sizeConstraints = as.integer(round(runif(K, N / K * 1.5, N / K * 2)))
system.time({rst = GMKMcharlie::KMconstrained(

X = dat, centroid = centroid, clusterWeightUB = sizeConstraints,
maxCore = 2L, tailConvergedRelaErr = 1e-6, verbose = TRUE)})

22 KMconstrainedSparse

KMconstrainedSparse K-means over sparse data input with constraints on cluster weights

Description

Multithreaded weighted Minkowski and spherical K-means via Lloyd’s algorithm over sparse rep-
resentation of data given cluster size (weight) constraints.

Usage

KMconstrainedSparse(
X,
d,
centroid,
Xw = rep(1, length(X)),
clusterWeightUB = rep(length(X) + 1, length(centroid)),
minkP = 2,
convergenceTail = 5L,
tailConvergedRelaErr = 1e-04,
maxIter = 100L,
maxCore = 7L,
paraSortInplaceMerge = FALSE,
verbose = TRUE
)

Arguments

X A list of size N, the number of observations. X[[i]] is a 2-column data frame.
The 1st column is a sorted integer vector of the indexes of nonzero dimensions.
Values in these dimensions are stored in the 2nd column as a numeric vector.
Internally the algorithm sets a 32-bit int pointer to the beginning of the 1st col-
umn and a 64-bit double pointer to the beginning of the 2nd column, so it is
critical that the input has the correct type.

d An integer. The dimensionality of X. d MUST be no less than the maximum of
all index vectors in X.

centroid A list of size K, the number of clusters. centroid[[i]] can be in dense or
sparse representation. If dense, a numeric vector of size d. If sparse, a 2-column
data frame in the same sense as X[[i]].

Xw A numeric vector of size N. Xw[i] is the weight on observation X[[i]]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

clusterWeightUB

An integer vector of size K. The upper bound of weight for each cluster. If Xw
are all 1s, clusterWeightUB upper-bound cluster sizes.

KMconstrainedSparse 23

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

convergenceTail

An integer. The algorithm may end up with "cyclical convergence" due to the
size / weight constraints, that is, every few iterations produce the same cluster-
ing. If the cost (total in-cluster distance) of each of the last convergenceTail
iterations has a relative difference less than tailConvergedRelaErr against the
cost from the prior iteration, the program stops.

tailConvergedRelaErr

A numeric value, explained in convergenceTail.

maxIter An integer. The maximal number of iterations. Default 100.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

paraSortInplaceMerge

A boolean value. TRUE let the algorithm call std::inplace_merge() (std
refers to C++ STL namespace) instead of std::merge() for parallel-sorting the
observation-centroid distances. In-place merge is slower but requires no extra
memory.

verbose A boolean value. TRUE prints progress.

Details

See details for KMconstrained() and KM()

Value

A list of size K, the number of clusters. Each element is a list of 3 vectors:

centroid a numeric vector of size d.

clusterMember an integer vector of indexes of elements grouped to centroid.

member2centroidDistance

a numeric vector of the same size of clusterMember. The ith element is the
Minkowski distance or cosine dissimilarity from centroid to the clusterMember[i]th
observation in X.

Empty clusterMember implies empty cluster.

Note

Although rarely happens, divergence of K-means with non-Euclidean distance minkP != 2 mea-
sure is still a theoretical possibility. Bounding the cluster weights / sizes increases the chance of
divergence.

24 KMppIni

Examples

N = 5000L # Number of points.
d = 500L # Dimensionality.
K = 50L # Number of clusters.

Create a data matrix, about 95% of which are zeros.
dat = matrix(unlist(lapply(1L : N, function(x)
{

tmp = numeric(d)
Nonzero entries.
Nnz = as.integer(max(1, d * runif(1, 0, 0.05)))
tmp[sample(d, Nnz)] = runif(Nnz) + rnorm(Nnz)
tmp

})), nrow = d); gc()

Convert to sparse representation.
GMKMcharlie::d2s() is equivalent.
sparsedat = apply(dat, 2, function(x)
{

nonz = which(x != 0)
list(nonz, x[nonz])

}); gc()

centroidInd = sample(length(sparsedat), K)

Test speed using sparse representation.
sparseCentroid = sparsedat[centroidInd]
Size upper bounds vary in [N / K * 1.5, N / K * 2]
sizeConstraints = as.integer(round(runif(K, N / K * 1.5, N / K * 2)))
system.time({sparseRst = GMKMcharlie::KMconstrainedSparse(

X = sparsedat, d = d, centroid = sparseCentroid,
clusterWeightUB = sizeConstraints,
tailConvergedRelaErr = 1e-6,
maxIter = 100, minkP = 2, maxCore = 2, verbose = TRUE)})

KMppIni Minkowski and spherical, deterministic and stochastic, multithreaded
K-means++ initialization over dense representation of data

Description

Find suitable observations as initial centroids.

KMppIni 25

Usage

KMppIni(
X,
K,
firstSelection = 1L,
minkP = 2,
stochastic = FALSE,
seed = 123,
maxCore = 7L,
verbose = TRUE
)

Arguments

X A d x N numeric matrix where N is the number of data points — each column is
an observation, and d is the dimensionality. Column-observation representation
promotes cache locality.

K An integer, the number of centroids.

firstSelection An integer, index of the observation selected as the first initial centroid in X.
Should be no greater than N.

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

stochastic A boolean value. TRUE runs the stochastic K-means++ initialization by Arthur
and Vassilvitskii (2007). Roughly speaking, the algorithm is stochastic in the
sense that each of the remaining observations has a probability of being selected
as the next centroid, and the probability is an increasing function of the minimal
distance between this observation and the existing centroids. In the same con-
text, the deterministic version selects as the next centroid with probability 1 the
observation that has the longest minimal distance to the existing centroids.

seed Random seed if stochastic.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

verbose A boolean value. TRUE prints progress.

Details

In each iteration, the distances between the newly selected centroid and all the other observations are
computed with multiple threads. Scheduling is homemade for minimizing the overhead of thread
communication.

Value

An integer vector of size K. The vector contains the indexes of observations selected as the initial
centroids.

26 KMppIniSparse

Examples

N = 30000L
d = 300L
K = 30L
X = matrix(rnorm(N * d) + 2, nrow = d)
CRAN check allows examples invoking 2 threads at most. Change `maxCore`
for acceleration.
kmppSt = KMppIni(X, K, firstSelection = 1L, minkP = 2,

stochastic = TRUE, seed = sample(1e9L, 1), maxCore = 2L)
kmppDt = KMppIni(X, K, firstSelection = 1L, minkP = 2,

stochastic = FALSE, maxCore = 2L)
str(kmppSt)
str(kmppDt)

KMppIniSparse Minkowski and spherical, deterministic and stochastic, multithreaded
K-means++ initialization over sparse representation of data

Description

Find suitable observations as initial centroids.

Usage

KMppIniSparse(
X,
d,
K,
firstSelection = 1L,
minkP = 2,
stochastic = FALSE,
seed = 123,
maxCore = 7L,
verbose = TRUE
)

Arguments

X A list of size N, the number of observations. X[[i]] is a 2-column data frame.
The 1st column is a sorted integer vector of the indexes of nonzero dimensions.
Values in these dimensions are stored in the 2nd column as a numeric vector.
Internally the algorithm sets a 32-bit int pointer to the beginning of the 1st col-
umn and a 64-bit double pointer to the beginning of the 2nd column, so it is
critical that the input has the correct type.

d An integer. The dimensionality of X. d MUST be no less than the maximum of
all index vectors in X.

K An integer, the number of centroids.

KMppIniSparse 27

firstSelection An integer, index of the observation selected as the first initial centroid in X.
Should be no greater than N.

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

stochastic A boolean value. TRUE runs the stochastic K-means++ initialization by Arthur
and Vassilvitskii (2007). Roughly speaking, the algorithm is stochastic in the
sense that each of the remaining observations has a probability of being selected
as the next centroid, and the probability is an increasing function of the minimal
distance between this observation and the existing centroids. In the same con-
text, the deterministic version selects as the next centroid with probability 1 the
observation that has the longest minimal distance to the existing centroids.

seed Random seed if stochastic.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

verbose A boolean value. TRUE prints progress.

Details

In each iteration, the distances between the newly selected centroid and all the other observations are
computed with multiple threads. Scheduling is homemade for minimizing the overhead of thread
communication.

Value

An integer vector of size K. The vector contains the indexes of observations selected as the initial
centroids.

Examples

N = 2000L
d = 3000L
X = matrix(rnorm(N * d) + 2, nrow = d)
Fill many zeros in X:
X = apply(X, 2, function(x) {

x[sort(sample(d, d * runif(1, 0.95, 0.99)))] = 0; x})
Get the sparse version of X.
sparseX = GMKMcharlie::d2s(X)

K = 30L
seed = 123L
Time cost of finding the centroids via dense representation.
CRAN check allows only 2 threads. Increase `maxCore` for more speed.
system.time({kmppViaDense = GMKMcharlie::KMppIni(

X, K, firstSelection = 1L, minkP = 2, stochastic = TRUE, seed = seed,
maxCore = 2L)})

28 KMsparse

Time cost of finding the initial centroids via sparse representation.
system.time({kmppViaSparse = GMKMcharlie::KMppIniSparse(

sparseX, d, K, firstSelection = 1L, minkP = 2, stochastic = TRUE,
seed = seed, maxCore = 2L)})

Results should be identical.
sum(kmppViaSparse - kmppViaDense)

KMsparse K-means over sparse representation of data

Description

Multithreaded weighted Minkowski and spherical K-means via Lloyd’s algorithm over sparse rep-
resentation of data.

Usage

KMsparse(
X,
d,
centroid,
Xw = rep(1, length(X)),
minkP = 2,
maxIter = 100L,
maxCore = 7L,
verbose = TRUE
)

Arguments

X A list of size N, the number of observations. X[[i]] is a 2-column data frame.
The 1st column is a sorted integer vector of the indexes of nonzero dimensions.
Values in these dimensions are stored in the 2nd column as a numeric vector.
Internally the algorithm sets a 32-bit int pointer to the beginning of the 1st col-
umn and a 64-bit double pointer to the beginning of the 2nd column, so it is
critical that the input has the correct type.

d An integer. The dimensionality of X. d MUST be no less than the maximum of
all index vectors in X.

centroid A list of size K, the number of clusters. centroid[[i]] can be in dense or
sparse representation. If dense, a numeric vector of size d. If sparse, a 2-column
data frame in the same sense as X[[i]].

Xw A numeric vector of size N. Xw[i] is the weight on observation X[[i]]. Users
should normalize Xw such that the elements sum up to N. Default uniform weights
for all observations.

KMsparse 29

minkP A numeric value or a character string. If numeric, minkP is the power p in the
definition of Minkowski distance. If character string, "max" implies Chebyshev
distance, "cosine" implies cosine dissimilarity. Default 2.

maxIter An integer. The maximal number of iterations. Default 100.

maxCore An integer. The maximal number of threads to invoke. No more than the total
number of logical processors on machine. Default 7.

verbose A boolean value. TRUE prints progress.

Details

See details in KM() for implementation highlights. There are some other optimizations such as,
except for the maximum norm, cost of computing the distance between a dense centroid vector and
a sparse observation is linear to the size of the sparse observation, which should be largely less
than the size of the dense vector. This is done by letting every centroid memorize its before-root
Minkowski norm. The full distance can then be inferred from adding the residual norm to the partial
distance.

Value

A list of size K, the number of clusters. Each element is a list of 3 vectors:

centroid a numeric vector of size d.

clusterMember an integer vector of indexes of elements grouped to centroid.
member2centroidDistance

a numeric vector of the same size of clusterMember. The ith element is the
Minkowski distance or cosine dissimilarity from centroid to the clusterMember[i]th
observation in X.

Empty clusterMember implies empty cluster.

Note

Although rarely happens, divergence of K-means with non-Euclidean distance minkP != 2 measure
is still a theoretical possibility.

Examples

===
Play random numbers. See speed.
===
N = 10000L # Number of points.
d = 500L # Dimensionality.
K = 100L # Number of clusters.

Create a data matrix, about 95% of which are zeros.
dat = matrix(unlist(lapply(1L : N, function(x)
{

tmp = numeric(d)
Nonzero entries.

30 s2d

Nnz = as.integer(max(1, d * runif(1, 0, 0.05)))
tmp[sample(d, Nnz)] = runif(Nnz) + rnorm(Nnz)
tmp

})), nrow = d); gc()

Convert to sparse representation.
GMKMcharlie::d2s() acheives the same.
sparsedat = apply(dat, 2, function(x)
{

nonz = which(x != 0)
list(nonz, x[nonz])

}); gc()

centroidInd = sample(length(sparsedat), K)

Test speed using dense representation.
centroid = dat[, centroidInd]
system.time({rst = GMKMcharlie::KM(

X = dat, centroid = centroid, maxIter = 100,
minkP = 2, maxCore = 2, verbose = TRUE)})

Test speed using sparse representation.
sparseCentroid = sparsedat[centroidInd]
system.time({sparseRst = GMKMcharlie::KMsparse(

X = sparsedat, d = d, centroid = sparseCentroid,
maxIter = 100, minkP = 2, maxCore = 2, verbose = TRUE)})

s2d Sparse to dense conversion

Description

Convert data from sparse representation (list of data frames) to dese representation (matrix).

Usage

s2d(
X,
d,
zero = 0,
verbose = TRUE
)

s2d 31

Arguments

X A list of size N, the number of observations. X[[i]] is a 2-column data frame.
The 1st column is a sorted integer vector of the indexes of nonzero dimensions.
Values in these dimensions are stored in the 2nd column as a numeric vector.

d An integer. The dimensionality of X. d MUST be no less than the maximum of
all index vectors in X.

zero A numeric value. In the result matrix, entries not registered in X will be filled
with zero.

verbose A boolean value. TRUE prints progress.

Value

A d x N numeric matrix.

Examples

N = 2000L
d = 3000L
X = matrix(rnorm(N * d) + 2, nrow = d)
Fill many zeros in X:
X = apply(X, 2, function(x) {

x[sort(sample(d, d * runif(1, 0.95, 0.99)))] = 0; x})
Get the sparse version of X.
sparseX = GMKMcharlie::d2s(X)
Convert it back to dense.
X2 = GMKMcharlie::s2d(sparseX, d)
range(X - X2)

Index

d2s, 2

GM, 3
GMcw, 8
GMfj, 12

KM, 17
KMconstrained, 19
KMconstrainedSparse, 22
KMppIni, 24
KMppIniSparse, 26
KMsparse, 28

s2d, 30

32

	d2s
	GM
	GMcw
	GMfj
	KM
	KMconstrained
	KMconstrainedSparse
	KMppIni
	KMppIniSparse
	KMsparse
	s2d
	Index

